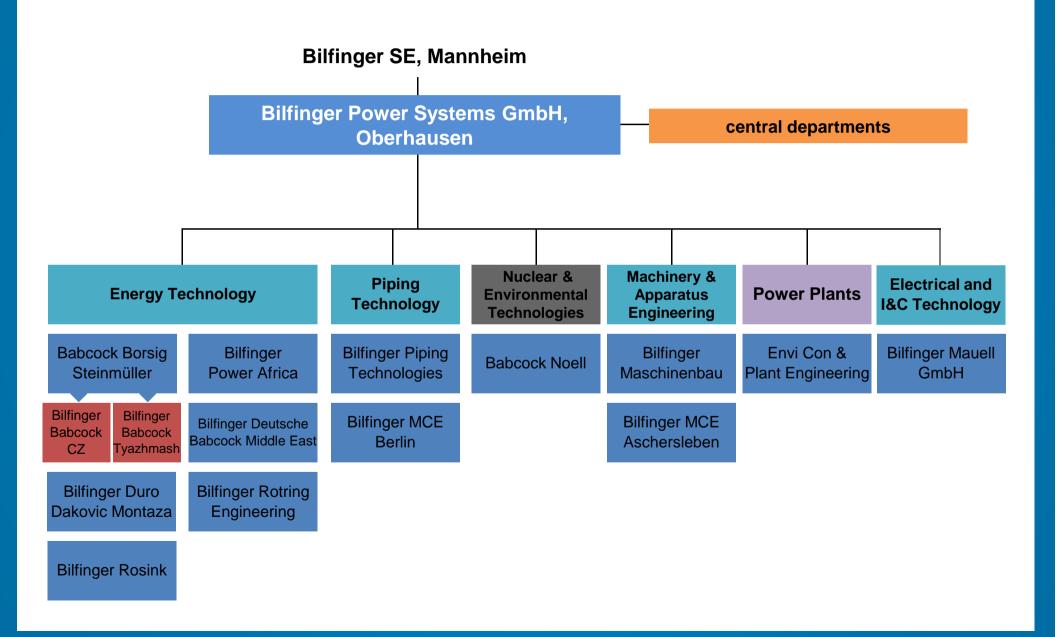


"The Tray Absorber Technology for new FGD Plants and Retrofits of Coal Fired Power Plants"

Energetyka Belchatow 2013

9. – 11. September, 2013

At a Glance - Group Structure Bilfinger Berger SE

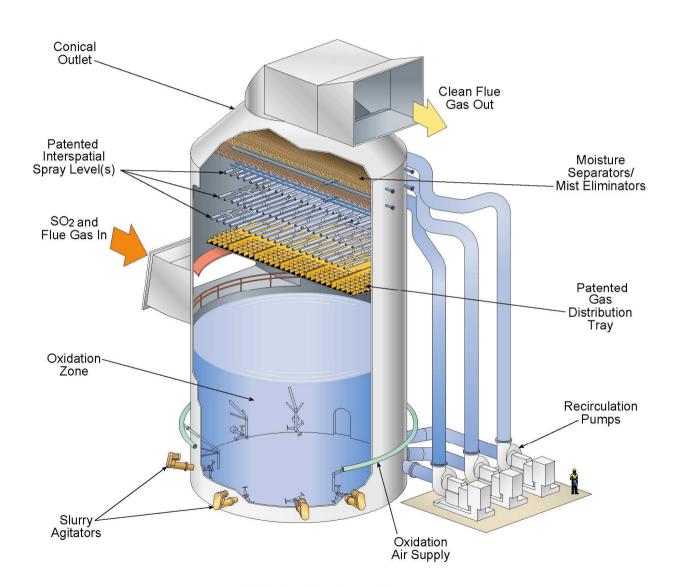


page 2 Babcock Noell GmbH

Bilfinger Berger SE				
Industrial Services	Power Services	Building and Facility Services	Construction	Concessions

Bilfinger SE (Shareholder) Structure of BPS

Babcock Noell GmbH (BNG) Scope of Supply and Services



- Design, engineering, delivery, complete installation and commissioning of Flue Gas Cleaning Systems:
 - wet / dry FGD
 - DeNOx
 - Filter (ESP, Bag Filter)
- Computional Fluid Dynamics (CFD) studies for flue gas systems
- Process Optimisation and Retrofitting / Upgrading of existing Flue Gas Cleaning Systems

Babcock Noell GmbH – The Tray-Absorber

page 5 Babcock Noell GmbH

© 2006 The Babcock & Wilcox Company. All rights reserved.

The Tray

The Tray consists of a perforated sheet, which is located directly above the flue gas inlet.

The slurry together with the flue gas forms a very intensive turbulence above the Tray,

a hold-up time of the slurry,

which both significantly improves the mass transfer of the SO₂.

FGD Boxberg Unit R

Scope:

Planning, construction, delivery, installation and commissioning of the FGD

consisting of:

Absorber system, steel works, limestone slurry transport and dosing system, gypsum dewatering system

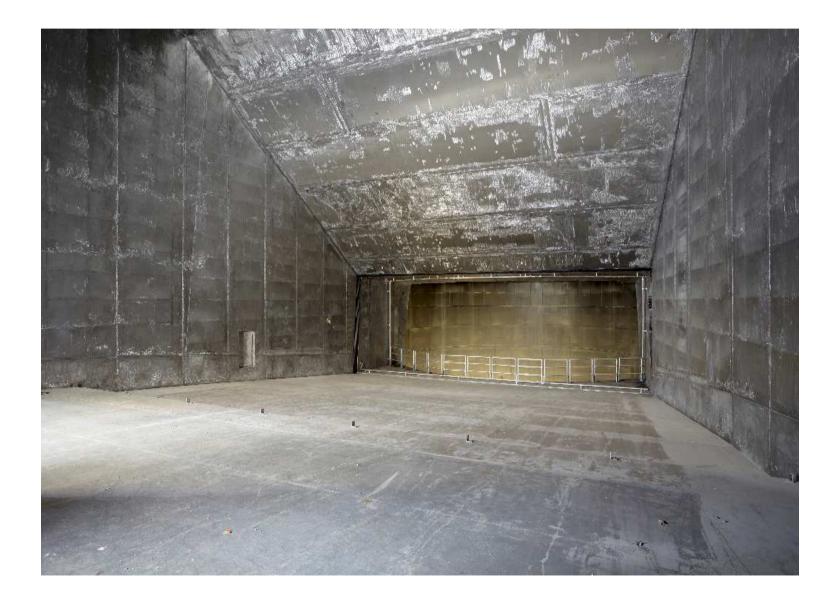
Technical Data:

Power per boiler unit:	670 MW
flue gas flow:	2.600.000 Nm ³ /h
fuel:	lignite
SO_2 -inlet concentration:	8.400 mg/Nm ³ , dry
SO ₂ - removal:	97,5 %
number of bsorber:	1

Location: Date of order: Commissioning: Hand over: Client: Boxberg, Saxonia October 2005 January 2012

October 2012

Vattenfall Europe Generation AG


Vom-Stein-Strasse 39 D- 03050 Cottbus

FGD Power Plant Boxberg Unit R

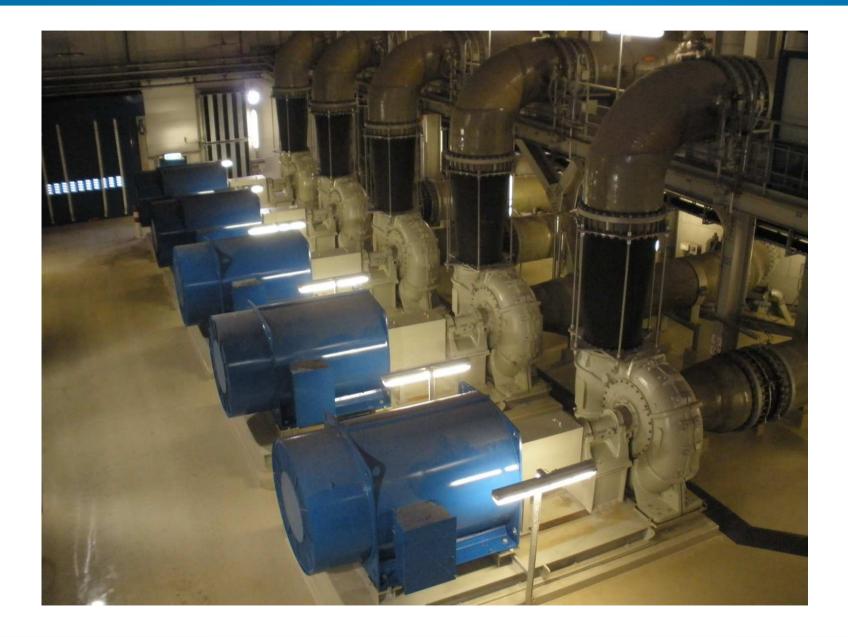
Flue gas inlet duct material: Alloy 59 cladded

page 8 Babcock Noell GmbH

FGD Power Plant Boxberg Unit R

- Absorber sump (rubber lining)
- Absorber internals (flue gas inlet duct and strainers)

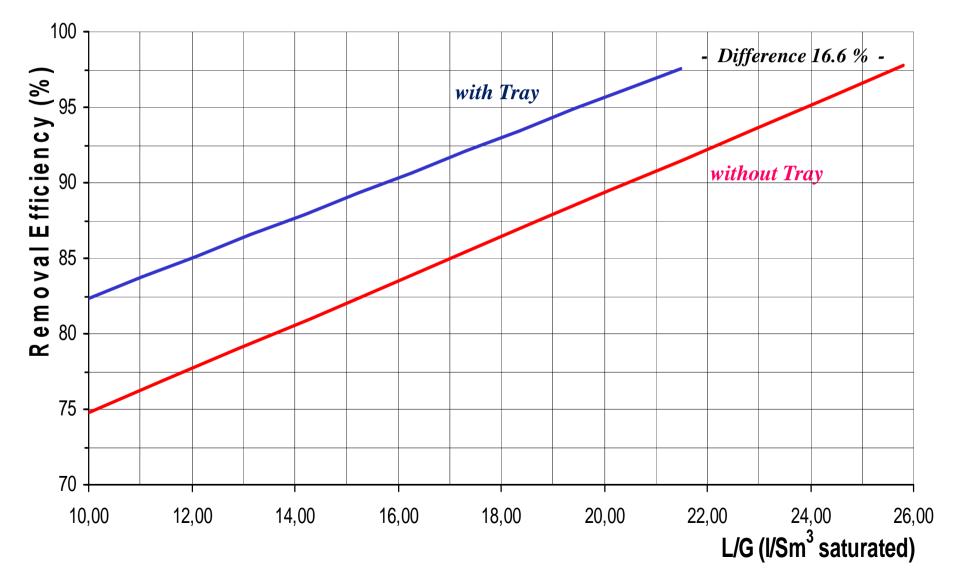
FGD Power Plant Boxberg Unit R The Tray (view in flue gas flow direction)


page 10 Babcock Noell GmbH

FGD Power Plant Boxberg Unit R Absorber recycle pumps

page 11 Babcock Noell GmbH

FGD Power Plant Boxberg Unit R Spray Header and Tray Tray elements in stainlees steel 1.4562


page 12 Babcock Noell GmbH

FGD Power Plant Boxberg Unit R

FGD Moorburg Units A & B

page 14 Babcock Noell GmbH

Scope:

Planning, construction, delivery, installation and commissioning of the FGD

consisting of:

2 Absorber Systems with stacks on top, flue gas ducts, steel works, limestone preparation and dosing system, gypsum dewatering system

2

Technical data:

Number of units: power per boiler unit: flue gas per unit: fuel: SO_2 -inlet SO_2 - removal number of Absorber: location:

Date of order: End of erection:

Commissioning:

Client:

820 MW 2.276.000 Nm³/h hard coal 3.950 mg/Nm³, dry 97,5 % 2 Hamburg-Moorburg, Germany March 2006 December 2011 Unit A: July 2013 Unit B: February 2013 Vattenfall Europe Generation AG Vom-Stein-Strasse 39

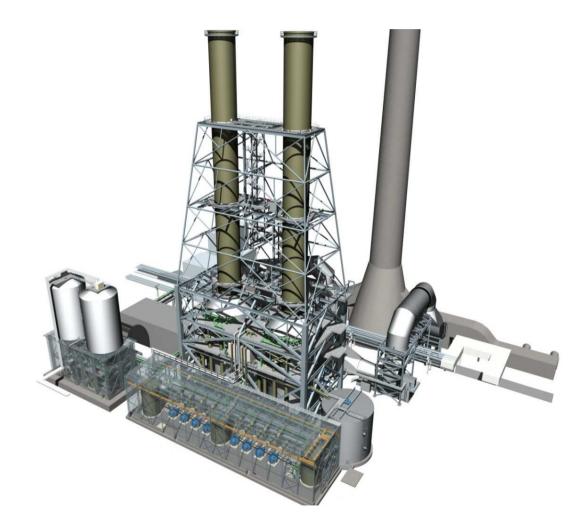
D-03050 Cottbus

Flue Gas Desulphurisation Plant Isalnita Power Plant (Romania) Units 7 & 8

Scope :

Engineering, design, delivery, installation and commissioning of a FGD consisting of:

2 Absorbersystems , chimneys placed directly on top, civil works, ducts, steel structure, 2 ID-fans, centrale lime stone supply, gypsum slurry discharge system


Technical Data:

No. units:	2
Unit size:	315 MW
Amount of flue gas per unit:	2.080.000 Nm ³ /h
Fuel:	Lignite
SO ₂ – inlet concentration:	5.543 mg/Nm ³ , dry
SO ₂ – removal efficiency:	97,4 %
Number of Absorbers:	2

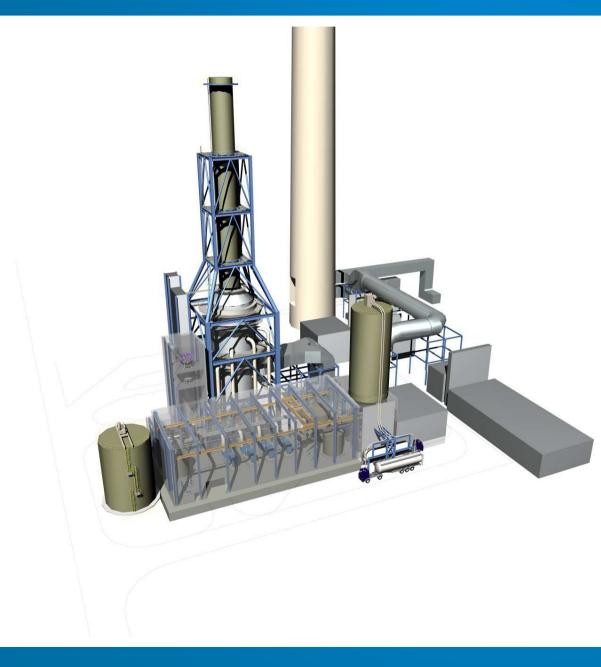
Location:	Isalnita (close to Craiova), Romania
Receipt of order:	August 2011
Commissioning:	Spring 2014

Client:

S.C. Complexul Energetic Craiova S. A. str. Unirii nr. 147 jud. Dolj Craiova, Romania

Flue Gas Desulphurisation Plant Isalnita Power Plant (Romania) Units 7 & 8

page 16 Babcock Noell GmbH



structure for the stacks

Absorber recycle pumps

Govora Power Plant (Romania) Unit 7 Flue Gas Desulphurisation Plant (FGD)

Scope :

Engineering, design, delivery, installation and commissioning of a FGD consisting of:

1 Tray-Absorbersystem , chimneys placed directly on top,

civil works, ducts, steel structure, 2 ID-fans, lime stone supply, gypsum slurry discharge system

Technical Data:

No. units:	1
Unit size:	420 t/h steam
Amount of flue gas per unit:	760.000 Nm ³ /h
Fuel:	Lignite
SO ₂ – inlet concentration:	6.975 mg/Nm ³ , dry
SO ₂ – removal efficiency:	97,5 %
Number of Absorbers:	1

Location:

Govora, Ramnico Valcea

Romania Receipt of order: May 2013 Commissioning: December 2015

Client: JUDETUL VALCEA (CONSILIUL JUEDTAN VALCEA) RM. VALCEA STR: GENERAL PRAPORGESCU NR. 1-T România

FGD Oxyfuel Pilotplant Schwarze Pumpe

Absorber with flue gas cooler upstream

Tray - Absorber

Installation of 1 - 3 Trays possible

- SO_2 inlet 12.000 mg/Nm³ dry
- removal efficiency > 99 %
- diameter 1,5 m
- height 16,5 m
- separate oxidation tank
- product: gypsum slurry

(utilized at Schwarze Pumpe FGD)

Enlargement of Mass Transfer by Installation of the Tray

page 19 Babcock Noell GmbH

Oxyfuel - Absorber without TRAY

Example FGD Oxfuel Pilot Plant Schwarze Pumpe

Enlargement of Mass Transfer by Installation of the Tray

page 20 Babcock Noell GmbH

Oxyfuel - Absorber with TRAY

Example FGD Oxfuel Pilot Plant Schwarze Pumpe

Provisions for Upgrading of existing FGD systems

The following measures can be carried out in order to increase the SO_2 separation of the existing absorbers:

Optimising of the nozzle equipment Increasing the I/g ratio (liquid/gas) internals for suppressing the wall effect Installation of a tray

With the existing pressure reserves of the installed fans, the installation of the tray represents the most effective solution.

Retrofit Options of the Tray in various Absorber Systems Absorber Unit 1 HKW 1, Altbach

Scope of Supply:

Optimisation of a double loop absorber by replacement of the existing wet film contact by a Tray, including design, delivery, installation and commissioning

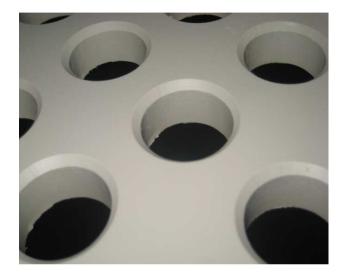
Technical data:

Number of units: Unit size: Amount of flue gas: Fuel: Dust in clean gas: Number of Absorbers:

Location: Receipt of order: Commissioning: Hand over:

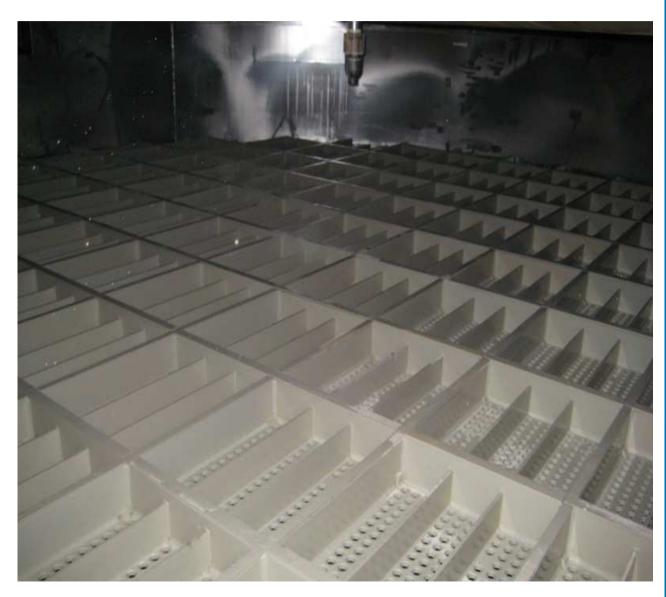
Client:

1 420 MW 800.000 Sm³/h Hard coal < 15 mg/Sm³ 1

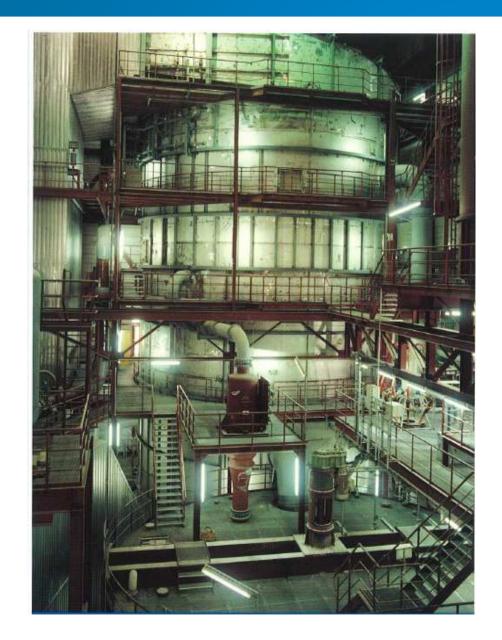

Altbach/Deizisau March 2008 June 2008 2009

EnBW Kraftwerk AG Heizkraftwerk Altbach/Deizisau Industriestraße 11 73776 Altbach

The Tray made of Polypropylen (PP)



page 23 Babcock Noell GmbH


The tray in PP design

Flue Das Desulphurisation Power Plant Ingolstadt Unit 4

Scope of Supply:

Optimisation of a double loop absorber by replacement of wet film contact by tray, incl. design, delivery, installation and commissioning

Technical data:

Number of units: Unit size: Amount of flue gas: Fuel: Required SO₂removal efficiency:

Dust in clean gas: Number of absorbers:

Location: Receipt of order: Commissioning: Hand over: Client:

1 460 MW 1.300.000 Sm³/h Heavy-fuel oil ("special quality")

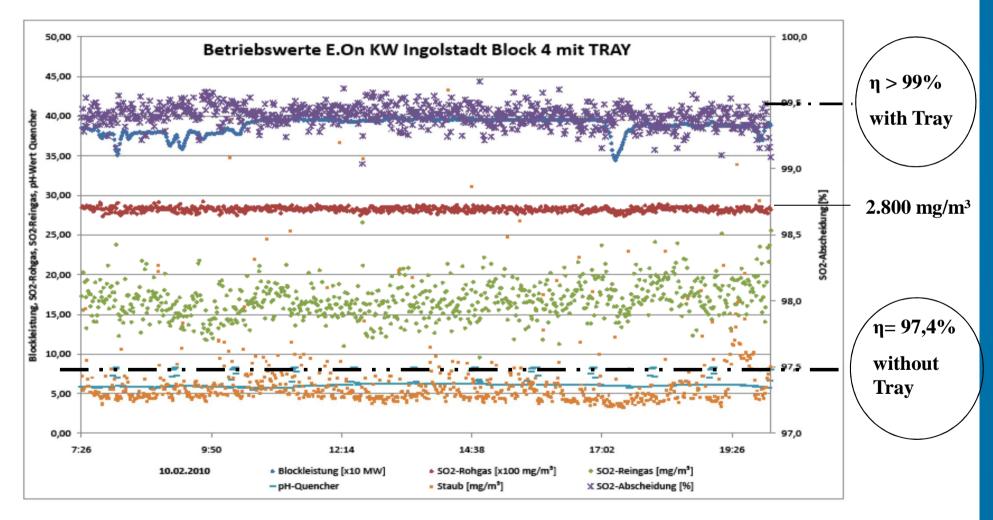
up to $3.000 \text{ mg/Sm}^3 > 98,5 \%$ up to $4.500 \text{ mg/Sm}^3 > 98,0 \%$ up to $5.500 \text{ mg/Sm}^3 > 97,5 \%$ < 10 mg/Sm^3

1

Ingolstadt January 2009 October 2009 2009 E on Kraftwerk

E.on Kraftwerk Ingolstadt Bayernwerkstraße 30 D-85098 Großmehring

The Tray at the FGD in Ingolstadt material 1.4435 Absorber internals after six months of service


page 25 Babcock Noell GmbH

Retrofit options of the Tray in various Absorber Systems

Process data Power Plant Ingolstadt unit 4, E.ON - Tray in operation

Increase in SO₂ efficiency from 96,5% to > 99% due to Tray operation

Power Plant Boxberg Units Q1 & Q2 Flue Gas Desulfurisation Tray-Retrofit

page 27 Babcock Noell GmbH

Power Plant Boxberg Units Q1 & Q2 Flue Gas Desulfurization System					
Dooble-Loop (Noell K	Dooble-Loop (Noell KRC Umwelttechnik GmbH)				
Scope of Supply:					
Optimisation of a double	Optimisation of a double-loop absorber, Tray-retrofit				
in the upper loop, incl. de	in the upper loop, incl. design, delivery, installation				
and commissioning.					
Flue gas flow:	1.800.000				
Nm³/h					
SO ₂ -inlet concentration:	8.400 mg/Nm ³ dry				
spray-levels upper loop:	4 * 7.000 m³/h				
spray-levels lower loop					
(Quencher):	3 * 3.600				
m³/h					
SO _x - removal after Tra	y-retrofit : > 96 %.				
Location:	Boxberg, Saxonia				
Date of order:	January 2012				
Hand over:	October 2012				
Client:	Vattenfall Europe Generation AG				
	Vom-Stoin-Strasso 30				

Vom-Stein-Strasse 39


With the BNG Tray technology for the new plants and for retrofitting the following advantages will be achieved:

- Longer suspension residence time in the absorption zone
- \square increase in SO₂ efficiency.
- Considerably improved dust and SO₃ separation in the absorber.
- Fewer / smaller circulation pumps or fewer spraying levels required (No spraying level required for the tray retrofits).
- Less power consumption for the absorber system.
- Savings in pipework, foundations and electrical / control technology.
- Less maintenance, e.g. on the pumps, due to a reduced quantity.
- Integrated maintenance platform directly beneath the spraying levels.

FGD TUROW Units 4 / 5 / 6

Latest order:Power Plant TUROW units 4, 5 and 6Wet Flue Gas Desulfurization with the BABCOCK NOELL - Tray - Absorber SystemClient:PGE Górnictwo i Energetyka Konwencjonalna S. A. – Oddział Elektrownia , Turów , Bogatynia

Fuel:local lignite and biomassmax. SO2 - concentration:2.500 mg/Nm3 (dry 6 % O2)Number of Absorber systems:3 (1 per unit)Sorbent:ground limestone / limestone slurry

max. flue gas amount (unit): $1.200.000 \text{ Nm}^3/\text{h}$ max. SO₂ - removal efficiency: $\geq 97,5 \%$

End product:

marketable gypsum

Babcock Noell GmbH

page 30 Babcock Noell GmbH

Alfred-Nobel-Str. 20 97080 Würzburg Germany

Phone: +49 931 903 - 0 Fax: +49 931 903 - 6000

info@bng.bilfinger.com www.bng.bilfinger.com

Registered at Local Court Würzburg, Commercial Register HRB7156 VAT-Id. No.: DE211420259

Management: Dr. Ronald Hepper Peter Stephan Helmut Welp, CEO

Thank you very much for

your attention!